

Effects of Mulberry (*Morus alba*) Fruits on Lipid Profiles, Antioxidant, and Inflammation status in Hypercholesterolemic Subjects

Mr. Wiroje Kaewruang

Asst. Prof. Dr. Patcharanee Pavadhgul Asst. Prof. Dr. Akkarach Bumrungpert Miss. Anchalee Sirikanchanarod

Presented by Mrs. Suthira Ponjaruen

Introduction and Literature Review

Cardiovascular disease (CVD)

- Cardiovascular disease (CVD) is a non communicable disease, but it is an important public health problem worldwide.
- High cholesterol in blood is an important risk factor of atherosclerosis that various diseases such as coronary heart disease and stroke in the future.

Cardiovascular diseases (CVD)

In 2012, an estimated 17.5 million people died from CVD, mainly from coronary heart disease (7.4 million) and stroke(6.7 million). This number is expected to increase to 23 million people in 2030

Source: World Health Organization. Global status report on noncommunicable diseases 2014.

Risk factors of cardiovascular disease

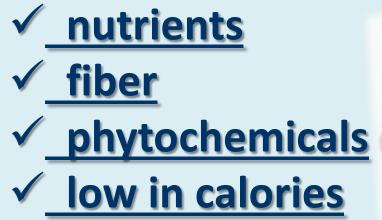
Non-modification

- Sex
- Age
- Family history of premature CHD

Niere

sh blood

- <u>Modification</u>
- High blood cholesterol
- High blood pressure
- Diabetes
- Unhealthy diet
- Overweight/obesity
- Cigarette smoking
- Physical inactivity



Source: World Heart Organization

The WHO recommends fruits and vegetables intake 400 g/day, adequate against the occurrence of chronic diseases.

Fruits and vegetables are rich in

Human intervention studies

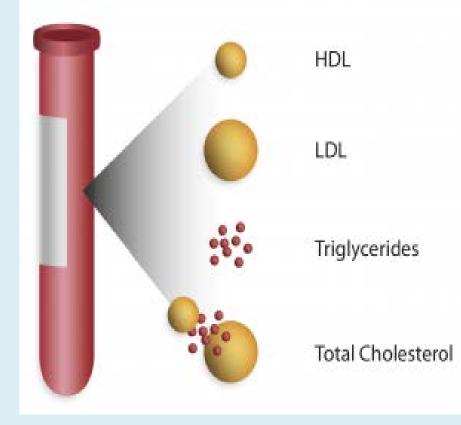
using berries fruits

(fresh, or juice, or freezedried),

or purified anthocyanin

extracts Berries are the best source

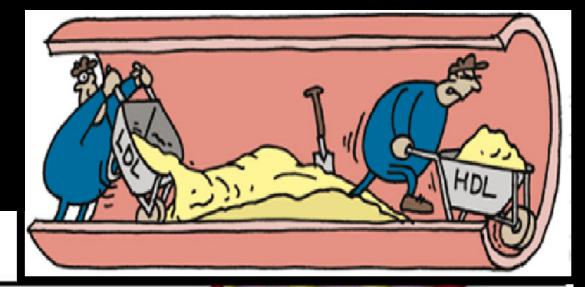
- ✓ polyphenol
- ✓ micronutrients
- ✓ fiber

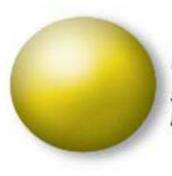

improvements in

- LDL oxidation
- lipid peroxidation
- total plasma antioxidant capacity

Mulberries :

the best source of...
✓ polyphenol, especially anthocyanin
✓ micronutrients
✓ fiber


A lipoprotein profile measures the level of cholesterol in the blood



Lipid profiles: ✓ High- density lipoprotein cholesterol (HDL-C) ✓ Low- density lipoprotein cholesterol (LDL-C) ✓ Triacylglycerol (TAG) ✓ Total cholesterol (TC)

LDL-C and HDL-C ?

Bad vs. Good Cholesterol

Bad (LDL)

stores cholesterol in the blood stream

Good (HDL)

regulates LDL storage and promotes excretion

Atheroscilerotic Plaque (LDL accumulation)

Artery

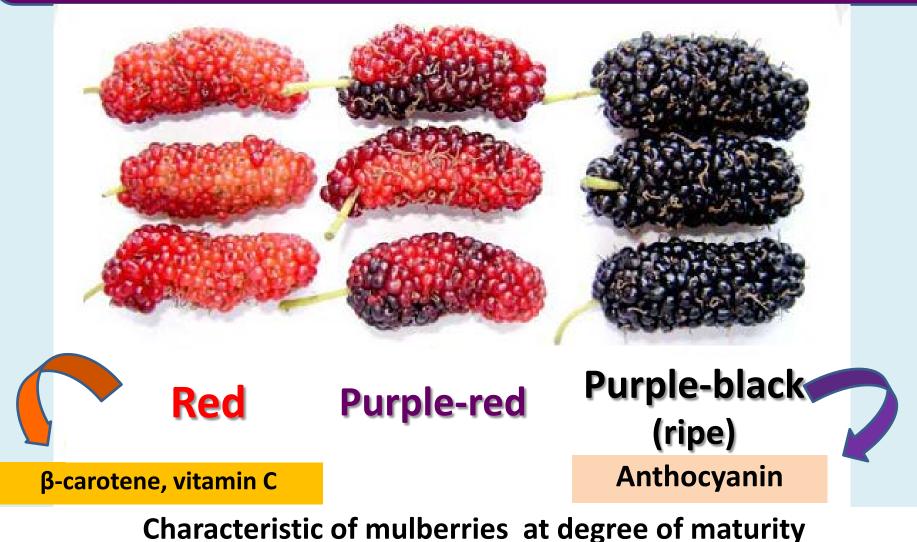
LDL-C and HDL-C?

 LDL-C : Low Density Lipoprotein (bad cholesterol) is associated with cardiovascular disease.

 HDL-C: High Density Lipoprotein (good cholesterol), because it prevents LDL- cholesterol and triglycerides accumulation in the arteries, cause of cardiovascular disease.

Classification of blood lipids

Blood lipids	Concen- tration (mg/dL)	Interpretation	Blood lipids	Concen- tration (mg/dL)	Interpretation
Total cholesterol LDL cholesterol	< 200 200-239 <u>></u> 240	Desirable Borderline high High Optimal	HDL cholesterol	< 40 ≥ 60 < 150 150-199	Low High Normal Borderline high
	100-129 130-159 160-189 ≥190	Near or above optimal Borderline high High Very high		200-499 ≥ 500	High Very high


Mulberry Fruit

Classification Family: Moraceae Genus: Morus L. Species: Morus spp.

There are three common mulberry species: Morus alba (white mulberry) Morus nigra (black mulberry) Morus rubra (red mulberry) 12

Mulberry Fruit Index

Sources: Aramwit et al. (2010), Hathaikarn et al. (2008)

Objectives

To compare lipid profiles antioxidant inflammation status in hypercholesterolemic subjects between mulberry and control group.

To compare lipid profiles antioxidant inflammation status in hypercholesterolemic subjects before and after mulberry consumption.

Materials and Methods

Study Design

Experimental study, a randomized controlled trial

Sample size calculation

Replace a formula

$$n = \frac{(0.84 + 1.96)^2 (0.23 + 0.18)}{(2.54 - 2.19)^2}$$

$$n = 26.79$$

$$n \approx 27 \text{ persons}$$

Account for drop outs 10 % = 3 persons Total sample size 30 persons/group (Total n = 60)

The reference values for decrease LDL cholesterol, used for calculating sample size Reference : Alvarez-Suarez JM et al, 2014

Recruitment

- The subjects had hypercholesterolemia, fasting
 - TC \geq 200 mg/ dL, LDL-C \geq 130 mg/dL.
- Age 30 to 60 years, males and females
- Willing to participate in the study.

Recruitment

Exclusion criteria

- Pre-existing disease (e.g. cardiovascular disease, diabetes mellitus, hypertension, liver, renal, thyroid disorders, cancer)
- Abnormalities in hematology (e.g. hemophilia, anemia)
- Consume antioxidant or lipid-lowering dietary supplements on a regular basis
- Use hormone replacement therapy

Recruitment

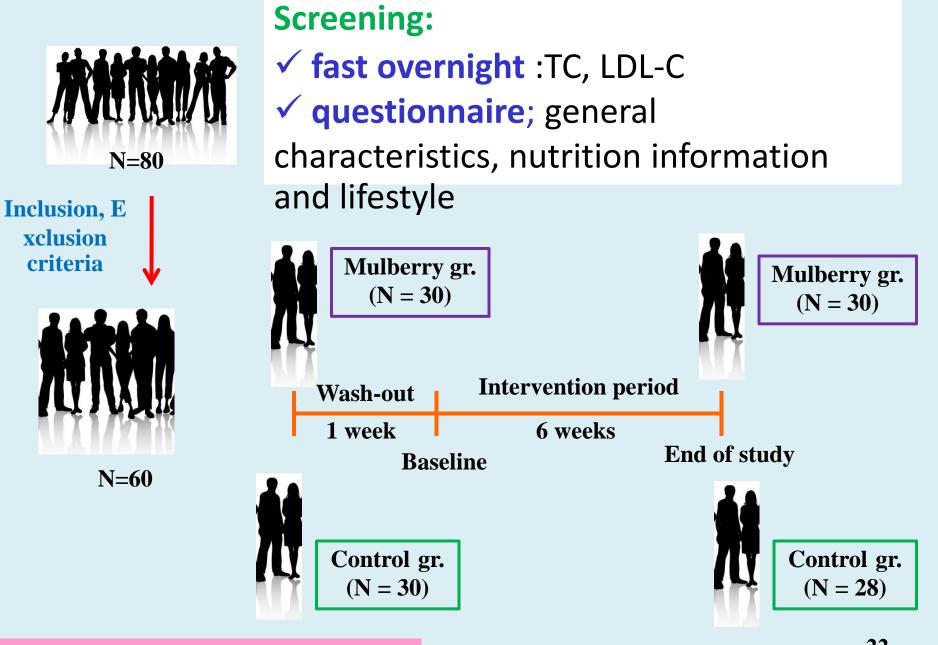
Exclusion criteria

Treatment with lipid-lowering drugs and

steroidal medications

- Pregnancy and lactation
- Smoking or drinking alcohol

The freeze-dried mulberry: Chiang Mai variety


Fresh mulberry are easily bruised.

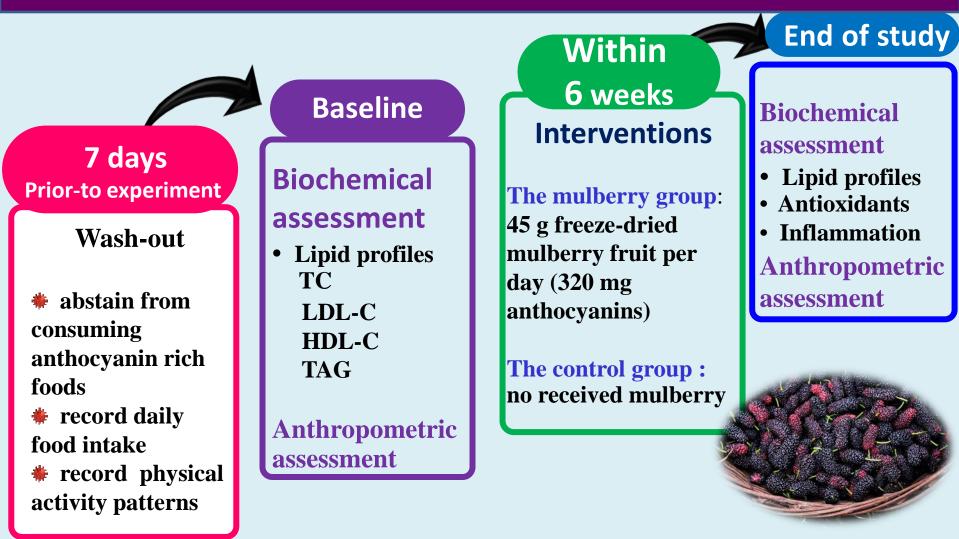
Antioxidant and high nutrition value that similar fresh mulberry

In the human study by Qin *et al* (2009) daily intake 320 mg anthocyanins for 12 weeks showed increased HDL-C and decreased LDL-C concentrations in dyslipidemic subjects.

320 mg anthocyanins _____ ~ 40 g Freeze-dried mulberry 8.31 mg Freeze-dried mulberry

Freeze-dried mulberry has anthocyanins 8.31 mg/g(Pansuwan et al (2010).

Experimental design (diagram)


The participants were divided into two groups which each group consisted of 30 participants.

Mulberry group were consumed freeze-dried mulberry which contain 45 grams per day for 6 weeks.

<u>Control group</u> that consist of 28 participants were not consumed (2 participants were withdrawn).

In order to follow the rules of research (compliance) samples, all participants were continuously observed by telephone and meeting every 2, 4, 6 weeks.

Methods

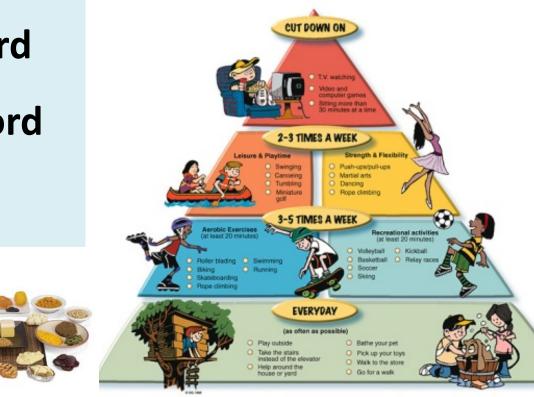
*during the trial, <u>maintain</u> their usual diet, physical activity, and lifestyle patterns

Instruments

- **1. General information and screening questionnaire**
- 2. Three-day food record
- 3. Physical activity record

QUESTIONNAIRE

Sometimes


Rarely

Very often

Often

 \Box

 \Box

25

Avoid

Foods vegetables and fruits are content rich of anthocyanin.

Data collection

Biochemical assessment:

- •Total cholesterol (TC)
- •Triacylglycerol (TAG)
- •High density lipoprotein cholesterol(HDL-C)
- Low density lipoprotein cholesterol (LDL-C)
 Antioxidant

Anthropometric assessment:

- •Body weight, Height
- Body fat and visceral fat
- •Body mass index (BMI)
- Waist circumference

Dietary assessment:

•Three days food record

Statistical analysis

- <u>Demographic data : percentage, mean ± SD</u>
- <u>Dietary nutrient intakes :</u>
 - Between the mulberry group and control group : Independent samples t - test
 - Each group at baseline, week 3, and week 6 of study: One-way ANOVAs

Lipid profiles Antioxidant and Inflammation status :

- Between the mulberry group and control group : Independent samples t - test
- Each group (pre-posttest) :
 Paired samples t test

Results

General characteristics:

		otal	Mull	berry	Co	ntrol	
General characteristics	(N=58)			(N=30)		=28)	<i>p</i> -value
	N	%	Ν	%	Ν	%	-
Gender							
Male	8	13.8	4	13.3	4	14.3	0.918
Female	50	86.2	26	86.7	24	85.7	
Age (years)							
30-39	11	19.0	5	16.7	6	21.4	0.268
40-49	21	36.2	9	30.0	12	42.9	
50-60	26	44.8	16	53.3	10	35.7	
Marital status							
Single	26	44.8	14	46.7	12	42.9	0.948
Married	25	43.1	12	40.0	13	46.4	
Separate	7	12.1	4	13.3	3	10.7	

General characteristics:

- gender
- age
- Marital status

- behaviors and lifestyles
 no significant difference between
- the two groups

Anthropometry and Blood pressure

At baseline

Variables	Mulberry	Control	<i>p</i> - value	
	(N= 30)	(N=28)		
Anthropometry				
Body weight (kg)	58.67 ± 11.19	62.38 ± 15.67	0.301	
Body mass index (kg/m ²)	23.87 ± 3.87	24.80 ± 5.41	0.454	
% body fat	32.44 ± 5.28	31.34 ± 6.14	0.471	
% visceral fat	7.17 ± 4.04	7.99 ± 5.93	0.621	
Waist circumference (cm)	81.67 ± 9.87	82.98 ± 12.90	0.667	

Blood pressure

Systolic blood pressure (mmHg)

Diastolic blood pressure(mmHg)

118.17 ± 15.18	119.00 ± 16.82	0.844
77.37 ± 9.31	76.93 ± 10.62	0.868

At week 6

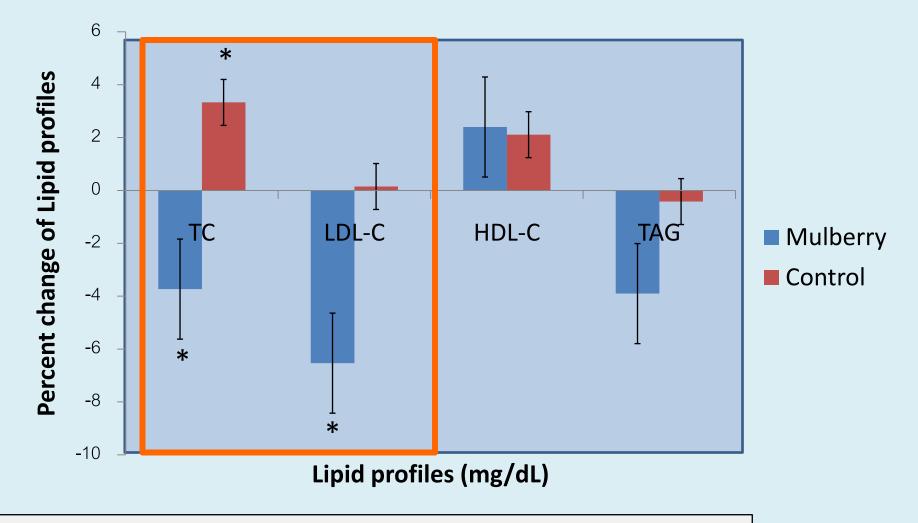
Variables	Mulberry	Control	p - value	
	(N= 30)	(N=28)		
Anthropometry				
Body weight (kg)	58.60 ± 11.05	62.72 ± 15.48	0.246	
BMI (kg/m ²)	24.02 ± 3.86	24.92 ± 5.32	0.464	
% body fat	32.34 ± 5.44	31.09 ± 6.81	0.563	
% visceral fat	6.93 ± 3.92	8.00 ± 5.55	0.433	
Waist circumference (cm)	83.22 ± 9.55	85.00 ± 12.06	0.534	
Blood pressure				
Systolic blood pressure (mmHg)	115.77 ± 13.40	116.96 ± 14.55	0.745	
Diastolic blood pressure (mmHg)	74.23 ± 10.44	73.79 ± 10.03	0.869	


Anthropometry and blood pressure

- mulberry group
- control group
- in both before and after the experiment was no difference

The effects of freeze-dried mulberry consumption on lipid profiles antioxidants and inflammation status in blood.

lipid profiles.



Changes of lipid profiles

Lipid profiles	Group	Mulberry	Control	<i>p</i> – value
(mg/dL)				
TC*	Mean change	- 9.23 ± 10.75	7.44 ± 12.13	< 0.001
	Percent change	-3.73 ± 3.99	3.33 ± 5.07	< 0.001
LDL-C*	Mean change	- 11.40 ± 12.04	-0.11 ± 8.77	< 0.001
	Percent change	- 6.53 ± 5.93	0.15 ± 4.90	< 0.001
HDL-C	Mean change	1.43 ± 4.96	0.75 ± 7.33	0.681
	Percent change	2.40 ± 8.60	2.11 ± 11.28	0.912
TAG	Mean change	- 7.76 ± 30.69	- 3.19 ± 25.40	0.549
	Percent change	- 3.90 ± 28.64	-0.42 ± 25.81	0.638

*Significant differences, *p* < 0.001 assessed by independent-sample *t* test

Changes of lipid profiles

Percent change of lipid profiles between mulberry group and control group * Significant differences, p < 0.001

This study found that the consumption of freeze-dried mulberry 45 g/day for 6 weeks could significantly decrease the TC 3.73% and LDL-C 6.53%.
No effect on TAG and HDL-C

TC was statistically significant increased
 TAG, HDL-C , LDL-C were no statistical significant in Control group

Antioxidant and Inflammation status

Antioxidant and Inflammation status

	Group	Week0	Week 6	Mean	Percent
				change	change
Antioxidant					
ORAC *	Mulberry	50.49 <u>+</u> 8.89	55.16 <u>+</u> 8.92	4.70 <u>+</u> 4.88	10.27 <u>+</u> 11.36
[TE (µM) / ml	Control	49.34 <u>+</u> 11.91	47.25 <u>+</u> 10.37	-2.09 <u>+</u> 4.45	-3.16 <u>+</u> 10.37
(g)]					
FRAP*	Mulberry	15.45 <u>+</u> 2.33	$\textbf{17.06} \pm \textbf{2.11}$	1.61 <u>+</u> 1.58	11.39 <u>+</u> 11.42
[TE (µM) / ml	Control	14.31 <u>+</u> 2.18	14.06 <u>+</u> 1.65	-0.25 <u>+</u> 1.97	-0.09 <u>+</u> 15.65
(g)]					
Inflammation					
hsCRP (mg/L)	Mulberry	1.75 <u>+</u> 1.87	1.59 <u>+</u> 1.84	-0.15 <u>+</u> 0.77	-6.6 <u>+</u> 37.49
	Control	2.30 <u>+</u> 1.87	2.08 <u>+</u> 1.76	-0.22 <u>+</u> 0.87	-4.64 <u>+</u> 34.69

Antioxidant

In mulberry group, the antioxidant resistant value, that was analyzed by **ORAC method**, was significantly increased to 55.16 μ M / ml after the 6 weeks consumption. In addition, the results from FRAP method was similar.

Antioxidant

It is noticeable, in mulberry group, the antioxidant, both **ORAC** and **FRAP**, in blood was significantly increased when compared between at pre- and post-experiment.

Inflammation status

Inflammation status between mulberry group and control group in both before and after the experiment was no difference

Conclusion

- Consumption 45 grams freeze-dried mulberry (325 mg anthocyanins, ~ 160 g fresh mulberry) per day for six weeks
 - Reduce <u>TC</u> (3.73%) and LDL-C (6.53%), respectively (p < 0.001)</p>
 - No change in HDL-C and TAG
 - Increase antioxidant activity
 - in hypercholesterolemic subjects

Recommendation

- I. Mulberry is natural source of antioxidants and good alternative food in order to control lipid profiles to normal levels.
- II. A great way to boost the fiber content in dietary intake, which benefits cardiovascular health in humans.

III. Patient's hypercholesterolemia reduced lipid lowering medications which reduce the expenses and side effects.

THANK YOU FOR YOUR ATTENTION

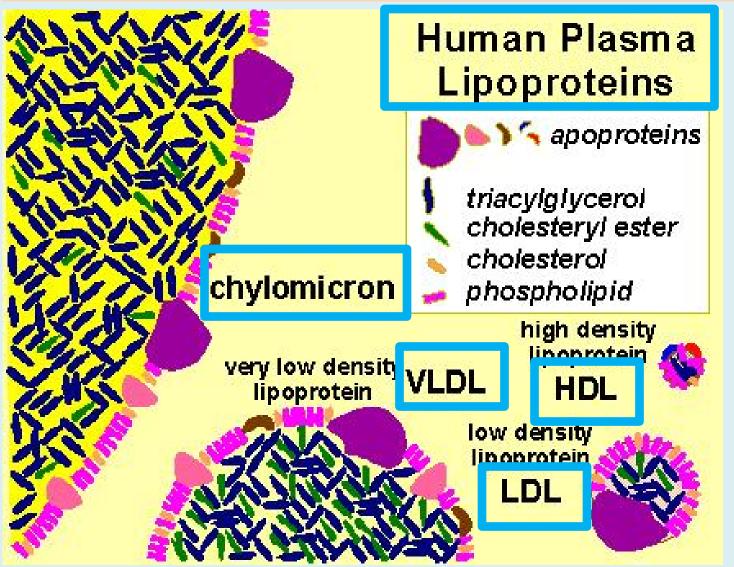
Suggestion for further study

Long term effect

Intervention using fresh or juice mulberry in hypercholesterolemia

In hypertension, diabetes mellitus or metabolic syndrome subjects

Author, year	Study design	Subjects	Diet	Result
Liu <i>et al</i> (2008)	experimental (in vitro) 12 weeks	Blood from healthy volunteers	MWEs (22.8 percent of anthocyanins) MACs (88.5 percent of anthocyanins)	 Inhibit LDL oxidation Inhibit the death of macrophages Decrease foam cells formation induced by ox-LDL Prevent of atherosclerosis



				Olac
Author, year	Study design	Subjects	Diet	Result
Yang <i>et al</i> . (2010)	experimental (in vivo) 4 weeks	Hyperlipidemia rats	 (i) normal diet (ii) normal diet and 5% MFP (iii) normal diet and 10% MFP (iv) high-fat diet, (v) high-fat diet and 5% MFP (vi) high-fat diet and 10% MFP 	rats on normal diet and MFP no significant change in lipid profile in the serum and liver. rats on high-fat diet and MFP significantly ↓ reduced level of serum and liver TG, TC, LDL-C ↓ reduced TBARS ↑ increased HDL-C ↑ increased SOD, GSH-Px
MFP - mulberry fruit freeze-dried powder TBARS - Thiobarbituric acid reactive substances			Increase	
SOD – superoxide dismutase GSH-Px – glutathione peroxidase			Uecrease	53

Literature reviews

LDL-C and HDL-C ?

- LDL (bad cholesterol) its low density Lipoprotein is associated with cardiovascular disease is the fat that can cause arteries to harden the fat LDL acts transports cholesterol come from the liver into the blood in the body if cholesterol remains in the bloodstream it accumulated on the walls of blood vessels, causing severe coronary artery stenosis solid long it will cause clogged arteries and high blood pressure as a result of ischemic heart disease kidney failure, paralysis etc.
- HDL stands for High Density Lipoprotein (good cholesterol), HDL high-density cholesterol is good because the arteries prevents cholesterol, triglycerides, and LDL accumulation in the arteries of HDL in the blood, it makes it more likely to be heart disease and stroke.

Literature reviews (cont')

Harvested during: the months of December to March

Cultivated : the northern and northeast of the Thailand

Consumption: fresh mulberry, mulberry product such as mulberry juice, wine, jam, jelly, icecream, candy, canned food and freezedried

Table 3Nutrient composition of fresh and freeze-dried mulberries
(Morus alba) values in per 100 grams

Nutrient	Unit	Ripe	Ripe	Ripe	Freeze-dried	
		mulberries ¹	mulberries ²	mulberries ³	mulberries ³	
Proximate composition						
Water	g	72.95	81.72	85-88	3.5-17	
Energy	kcal	96.35	67.36	43	-	
Protein	g	1.68	1.55	0.50-1.40	-	
Lipid	g	0.47	0.48	0.39-0.50	7.54	
Carbohydrate	g	21.35	14.21	7.8-9.8	-	
Fiber	g	2.03	1.47	0.9-1.7	24.3	
Sugars	g	-	7.55	1.8-16.2	72.7-80.2	

Table 3Nutrient composition of fresh freeze-dried mulberries (Morus alba)values in per 100grams (cont')

Nutrient	Unit	Ripe	Ripe	Ripe	Freeze-dried
		mulberries ¹	mulberries ²	mulberries ³	mulberries ³
Vitamins and mine	erals				
Calcium (Ca)	mg	0.21	576	39-443	-
Potassium (K)	mg	-	1,731	194-1,668	-
Sodium (Na)	mg	-	280	10-61	-
Magnesium (Mg)	mg	_	240	17-115	_
Iron (Fe)	mg	43.48	73	1.85-190	48.1
Phosphorus (P)	mg	0.07	-	35-247	-
Zinc (Zn)	mg	-	50.20	0.12-3.20	12.1
Vıtamın A	IU	25	-	-	-
Vitamin B1	mg	50.65	-	-	-
Vitamin B2	mg	3.66	0.09	-	-
Vitamin B6	mg	930.10	-	-	-
Vıtamın C	mg	4.16	15.20	11-36.40	1.20
Folic acid	mg	6.87	-	-	-
Niacin	mg	0.72	3.10	-	-
Tannin	g	1.06	-	-	-

Sources: ¹ Nuipirom W,2545 ²Imran, 2010 ³Mine,2013

Mulberry (cont')

Table 4 Quality of fresh and freeze-dried mulberries

Quality	Fre	esh	Freeze-dried		
	Red	Purple-black (Mature)	Red	Purple-black (Mature)	
Total polyphenol (µg/g)	1,200.49 <u>+</u> 55.42	3,716.24 <u>+</u> 63.83	10,074.08 <u>+</u> 70.85	10,521.18 <u>+</u> 96.6	
Total Anthocyanin (µg/g)	150.40 <u>+</u> 36.32	2,940.70 <u>+</u> 60.44	3,151.51 <u>+</u> 75.7	8,306.91 <u>+</u> 66.8	
Quercetin (µg/g)	1.03 <u>+</u> 0.43	3.08 <u>+</u> 0.45	5.72 <u>+</u> 0.24	17.50 <u>+</u> 0.50	
Antioxidant activity	5.66 <u>+</u> 0.82	8.45 <u>+</u> 0.95	11.87 <u>+</u> 1.44	13.40 <u>+</u> 2.88	

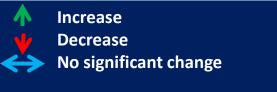
Source: Fresh-Nampanon H *et al*, 2008 Freeze-dried; Pansuwan S *et al*, 2007

Anthocyanin in fruits

Table 5 Anthocyanin contents in fruits origin

Fruits	Anthocyanin content (mg/ 100 grams fresh weight)		
D'11			
Bilberry	300-698		
Blackberry	82.5-325.9		
Blueberry	61.8-299.6		
Cranberry	67-140		
Cherry	2-450		
*Mulberry	294		
Raspberry	20-687		
Strawberry	19-55		

Sources: *Nampanon H et al, 2008, Sonia de Pascual-Teresa, 2010

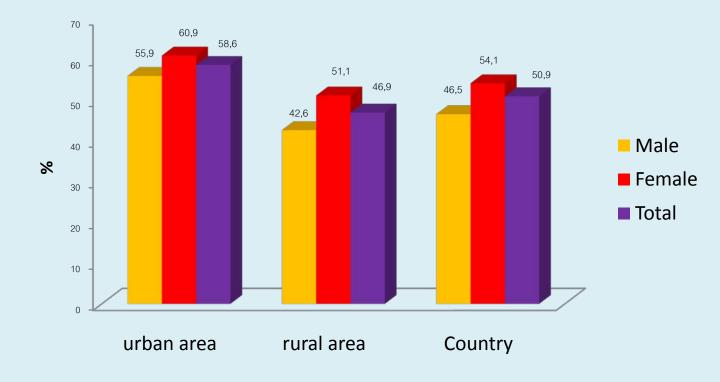

Author, year	Study design	Subjects	Diet	Result
Basu <i>et al</i> . (2010)	Intervention study (in human) 8 weeks	Metabolic syndrome subjects (N=27, n= 15 in treatment)	four cups (50 grams freeze-dried strawberry powder) of the strawberry beverage daily (~ 500 g fresh strawberries) or placebo, equivalent amounts of fluids	 ↓ TC (10 %) ↓ LDL-C (11 %) ↓ small LDL particles (14 %) ←>TG, HDL-C

N - Number CRP - C-reactive protein TNFα - tumour necrosis factor α

Author, year	Study design	Subjects	Diet	Result
Curtis <i>et al</i> (2009)	Double- blind,randomized,p lacebo-controlled trail (in human) 12 weeks	Healthy postmenopaus al women (N=52)	Anthocyanins derived from elderberry 500 mg/day or placebo	 Biomarker of inflammatory (CRP, TNFα) Plasma lipids (TC, HDL-C, LDL-C, TG)
Zhu <i>et al</i> . (2012)	Double- blind,randomized,p lacebo-controlled trail (in human) 24 weeks	Hypercholester olemic subjects (N=150)	Pure anthocyanins derived from bilberry and black currant 320 mg /day or placebo	 ↑ HDL-C (14 %) ↓ LDL-C (10.4 %) ← TC,TG, insulin

N - Number TG – Triacylglycerol TC – Total cholesterol

General characteristics (cont')


							ONO
	Τ	'otal	Mull	berry	Co	ntrol	
General characteristics	(N=58)		(N= 30)		(N=28)		<i>p</i> -value
	Ν	%	Ν	%	Ν	%	_
Level of education							
High school, Diploma	13	22.4	9	30.0	4	14.3	0.450
Bachelor degree	30	51.7	13	43.3	17	60.7	
Master degree or high	15	25.9	8	26.7	7	25.0	
Characteristics of work							
Sedentary	38	65.5	19	63.3	19	67.9	0.723
Moderate movement	20	34.5	11	36.7	9	32.1	
Income per month (bath)							
<u>≤</u> 10,000	2	3.4	1	3.3	1	3.6	0.877
10,001 – 20,000	15	25.9	8	26.7	7	25.0	
20,001 - 30,000	21	36.2	11	36.7	10	35.7	
> 30,001	20	34.5	10	33.3	10	35.7	

Introduction (cont')

Figure 1 The prevalence of **borderline high cholesterol** (TC <u>></u> 200 mg/dL) in Thai people who age upper than 15 years old

Experimental study, a randomized controlled trial

Sample size calculation

This research will calculate using the following formula:

$$n = \frac{(Z_{\beta} + Z_{\alpha/2})^2 (\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2)^2}$$

$$\beta = 0.20 \qquad Z_{\beta} = Z_{0.20} = 0.84$$

$$\alpha = 0.05 \qquad Z_{\alpha/2} = Z_{0.025} = 1.96$$

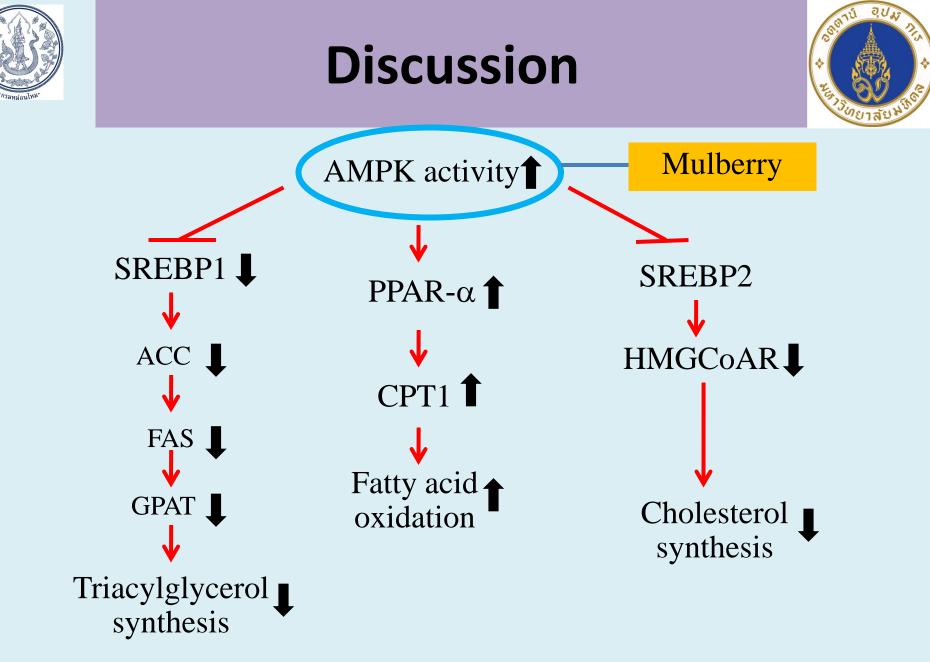
Mulberries on lipid profiles, antioxidant activity, and inflammatory status

inniaulmi.					
Variables	Mulberry	Mulberry Control			
	(N=30)	(N=28)			
Lipid profiles					
TC (mg/dL)	235.07 ± 28.10	237.26 ± 32.72	0.787		
LDL-C (mg/dL)	167.47 ± 29.32	166.59 ± 34.02	0.917		
HDL-C (mg/dL)	61.13 ± 12.59	65.39 ± 15.86	0.261		
TAG (mg/dL)	117.03 ± 41.21	100.50 ± 31.97	0.105		

· <i>insumieulum</i> .			
Variables	Mulberry	Control	<i>p</i> - value
	(N= 30)	(N=28)	
Lipid profiles			
TC (mg/dL)	225.83 ± 24.26	244.70 ± 33.12	0.019
LDL-C (mg/dL)	156.07 ± 24.70	166.48 ± 32.64	0.184
HDL-C (mg/dL)	62.57 ± 13.66	66.14 ± 15.96	0.362
TAG (mg/dL)	109.28 ± 43.65	97.31 ± 30.74	0.250

Chapter V Discussion

Discussion


Author, year	Study design	Subjects	Diet	Result	
Present study	randomized, controlled trail (in human) 6 weeks	hypercholes terolemic subjects (N=58)	45 g freeze-dried mulberry per day (325 mg anthocyanins) or control	 ↓ TC (3.73 %) ↓ LDL-C (6.53 %) 	
Qin <i>et al</i> . (2009)	Double- blind,randomized ,placebo- controlled trail (in human) 12 weeks	Dyslipidemic subjects (N=120)	Natural purified anyhocyanins derived from bilberry and black currant 320 mg / day or placebo	 ↑ HDL-C (13.7 %) ↓ LDL-C (13.6 %) ↓ CETP activity 	

Discussion

Author, year	Study design	Subjects	Diet	Result
Ou <i>et al</i> . (2011)	experimental (in vitro) 24 hour	In human hepatoma HepG2 cells	Mulberry water extracts 5.66 % <u>+</u> 1.53 of anthocyanins	 Inhibition lipogenic enzymes (FAS, ACC) Suppressed fatty acid synthesis. Stimulated fatty acid oxidation

Author, year	Study design	Subjects	Diet	Result
Duangjai <i>et al .</i> (2011)	experimental (in vitro)	Caco-2 cells	Mulberry extracts 100 µg/mL	Blocked the uptake of cholesterol into Caco-2 cells (about 25% inhibition)

Mulberry Fruits

- quercetin (6.9 µg/g dry fruits)
- rutin (41.35 μg/g dry fruits)
- Wu *et al* suggest rutin cloud reduce lipid accumulation by decreasing the activity of key enzymes in lipid metabolism, such as ACC, FAS.

Dietary calcium is one mineral

▶ up-regulate CYP7A1 (the gene of cholesterol-7α- hydroxylase)
 ▶ decreased plasma CETP activity

Leading to reduction in the liver and plasma cholesterol level

 The freeze-dried mulberry provide approximately 24.3 grams fiber/100 grams freeze-dried mulberry

 In our study may have been due to the increase in dietary fiber intake from baseline about 10 grams per day during the six weeks

- Castro et al following 316 of Japanese-Brazilians subjects in 7 years observed that a decrease of 12.5 mg/dL in the serum TC levels for each increase of 10 grams in the consumption of dietary fiber intake.
- Streppel *et al* found that for every 10 grams per day increment in fiber, there was a 17% reduction in CHD mortality and a 9% reduction in all-cause mortality.

The mechanisms of cholesterol-lowering effects of mulberry as follow:

- Blocked the uptake of cholesterol into Caco-2 cells
- Inhibited of cholesterol ester transfer protein (CETP) activity
- Stimulating AMPK pathway
- Up-regulate the gene of CYP7A1

The synergistic effects of

Anthocyanins
Polyphenols
(e.g. rutin, quercetin)
Fiber

in mulberry fruits are possibly the reasons decreasing serum TC, LDL-C levels of hypercholesterolemic subjects.

Dietary intake (cont')

Mulberry group

		<i>p</i> -value		
	Week 0	Week 3	week 6	-
Energy (kcal/d)	1,265.0 ± 279.1	1,194.7 ± 302.0	1,163.7 ± 295.7	0.393
Carbohydrate				
(g/d)	188.0 ± 47.8	175.8 ± 47.0	170.1 ± 41.8	0.305
(% of energy)	59.2 ± 8.2	58.8 ± 7.3	59.1 ± 8.3	0.974
Protein				
(g/d)	43.1 ± 14.2	41.5 ± 12.7	44.1 ± 17.5	0.793
(% of energy)	13.7 ± 2.6	14.1 ± 2.3	14.7 ± 2.9	0.315
Fat				
(g/d)	38.1 ± 13.3	37.0 ± 14.1	35.4 ± 15.2	0.771
(% of energy)	26.6 ± 6.6	28.0 ± 9.0	26.2 ± 6.8	0.614
Cholesterol (mg/d)	202.4 ± 100.2	199.4 ± 118.8	195.0 ± 118.8	0.968
Fiber (g/d)	10.7 ± 6.9^{a}	19.4 ± 5.9^{b}	18.4 ± 4.3^{b}	< 0.001*

Dietary intake (cont')

Control group

		Control (N = 28)		<i>p</i> -value
	Week 0	Week 3	week 6	-
Energy (kcal/d)	1,243.9 ± 288.6	$1,209.7 \pm 256.4$	$1,183.3 \pm 230.9$	0.702
Carbohydrate				
(g/d)	189.0 ± 49.1	181.9 ± 53.0	171.2 ± 44.2	0.422
(% of energy)	58.9 ± 7.4	59.0 ± 8.2	57.7 ± 8.2	0.796
Protein				
(g/d)	43.1 ± 12.2	41.9 ± 10.5	41.7 ± 11.8	0.890
(% of energy)	14.0 ± 3.1	14.0 ± 2.9	14.8 ± 4.1	0.650
Fat				
(g/d)	36.5 ± 13.0	37.8 ± 12.3	37.2 ± 10.8	0.966
(% of energy)	25.5 ± 6.0	27.2 ± 6.3	28.1 ± 6.1	0.317
Cholesterol (mg/d)	203.1 ± 94.3	201.6 ± 87.7	195.9 ± 92.8	0.957
Fiber (g/d)	8.0 ± 4.9	8.3 ± 3.7	7.7 ± 3.8	0.865

Dietary intake

		Mulberry	Control	<i>p</i> - value
Energy (kcal/d)	Week 0	1,265.0 ± 279.1	1,243.9 ± 288.6	0.783
	Week 6	1,163.7 ± 295.7	1,183.3 ± 230.9	0.785
Carbohydrate				
(g/d)	Week 0	188.0 ± 47.8	189.0 ± 49.1	0.939
	Week 6	170.1 ± 41.8	171.2 ± 44.2	0.925
(% of energy)	Week 0	59.2 ± 8.2	58.9 ± 7.4	0.872
	Week 6	59.1 ± 8.3	57.7 ± 8.2	0.542
Protein				
(g/d)	Week 0	43.1 ± 14.2	43.1 ± 12.2	0.984
	Week 6	44.1 ± 17.5	41.7 ± 11.8	0.560
(% of energy)	Week 0	13.7 ± 2.6	14.0 ± 3.1	0.725
	Week 6	14.7 ± 2.9	14.8 ± 4.1	0.977

Dietary intake (cont')

		Mulberry	Control	<i>p</i> - value
Fat				
(g/d)	Week 0	38.1 ± 13.3	36.5 ± 13.0	0.659
	Week 6	35.4 ± 15.2	37.2 ± 10.8	0.636
(% of energy)	Week 0	26.6 ± 6.6	25.5 ± 6.0	0.543
	Week 6	26.2 ± 6.8	28.1 ± 6.1	0.286
Cholesterol	Week 0	202.4 ± 100.2	203.1 ± 94.3	0.979
(mg/d)	Week 6	195.0 ± 118.8	195.9 ± 92.8	0.973
Fiber (g/d)	Week 0	10.7 ± 6.9	8.0 ± 4.9	0.096
	Week 6	18.4 ± 4.3	7.7 ± 3.8	< 0.001*

Behaviors and lifestyles

							OIND
	Τ	otal	Mull	berry	Co	ntrol	
Behaviors and lifestyles	(N	[=58)	(N=	=30)	(N:	=28)	<i>p</i> -value
	Ν	%	Ν	%	Ν	%	
Meals per day							
2	7	12.1	6	20.0	1	3.6	0.089
3	46	79.3	22	73.3	24	85.7	
4-5	5	8.6	2	6.7	3	10.7	
Source of meals							
Cooking at home	17	29.3	8	26.7	9	32.1	0.614
Eating outside	11	19.0	6	20.0	5	17.9	
Ready to eat foods	29	50.0	15	50.0	14	50.0	
Frozen food products	1	1.7	1	3.3	-	-	
Exercise							
Never	34	58.6	15	50.0	19	67.9	0.177
Yes							
1-2 time/week	17	29.3	9	30.0	8	28.6	
3-4 time/week	6	10.3	5	16.7	1	3.6	
\geq 4 time/week	1	1.7	1	3.3	-	-	

1. General information and screening questionnaire

แบบสอบถามงานวิจัย

เรื่อง "ผลของการบริโภคผลหม่อนต่อระดับไขมันในเลือด ในผู้ที่มีระดับไขมันในเลือดสูง"

<mark>คำชี้แจงในการตอบแบบสอบถาม</mark> แบบสอบถามชุคนี้มีทั้งหมด 3 ส่วน คือ

> ส่วนที่ 1 ข้อมูลส่วนบุคคลทั่วไป ส่วนที่ 2 ข้อมูลพฤติกรรมสุขภาพ ส่วนที่ 3 ข้อมูลการตรวจร่างกายและผลการตรวจทางห้องปฏิบัติการ

2. Three-day food record

Code.....

แบบบันทึกอาหารบริโภค บันทึกวัน [] อาทิตย์ [] จันทร์ [] อังคาร [] พุธ [] พฤหัสบดี [] ศุกร์ [] เสาร์ วันที่......

มือ/	ชนิดของอาหารที่เป็น		ปริมาณที่บริโภค					หมายเหตุ	Food		
รายการ	ส่วนประกอบ	ข้าว	เนื้อสัตว์	ผัก	ผลไม้	ไขมัน	น้ำตาล	นม (กล่อง/	อื่น ๆ (ขนาด/		Code
อาหาร		(ทัพพี)	(ช้อนกินข้าว)	(ทัพพี)	(ส่วน)	(ช้อนชา)	(ช้อนชา)	รสชาติ/ยี่ห้อ)	จำนวน/ส่วน*)		
	เขาอ อำนาน และส่วน เช่น สั										

ลู่มือการบันทึกอาหารบริโภค

การบันทึกรายละเอียดของอาหารที่บริโภคในแต่ละวัน จะช่วยให้ท่าน ทราบเกี่ยวกับปริมาณและพลังงานที่ท่านบริโภคว่ามากน้อยเพียงใค ซึ่งจะเป็นเครื่องมือที่ ช่วยในการควบคุมการบริโภคอาหารได้ ดังนั้นจึงขอให้ท่านบันทึกรายละเอียดของ อาหารที่บริโภค ทั้งชนิค และปริมาณของอาหารที่บริโภคตามจริง โดยมีคำแนะนำใน การบันทึกอาหารบริโภค ดังนี้

 การบันทึกอาหารของท่านในครั้งนี้ ขอให้ท่านทำการบันทึก ทั้งหมด 3 วัน/1 สัปดาห์ (วันธรรมดา 2 วันและวันหยุด 1 วัน)

 การบันทึกควรจะทำทันทีหลังรับประทานอาหารเสร็จในแต่ละมื้อ หรือแต่ละ ครั้งของการรับประทานอาหาร (ถ้าเป็นไปได้) เพื่อป้องกันการลืม

 การบันทึกอาหารบริโภคให้ทำฉพาะในวันที่ท่านมีการรับประทานอาหาร ตามปกติ ถ้าท่านป่วยหรือมีงานเลี้ยง ไม่ต้องทำการบันทึกในวันนั้น

 การบันทึกอาหารที่ท่านรับประทาน ขอให้บันทึกอย่างละเอียด โดยบอกชนิด และปริมาณของอาหารนั้นให้ชัดเจน

3. Physical activity record

Code.....

แบบบันทึกกิจวัตรประจำวัน

.....

วันที่

เวลา	กิจกรรมที่ทำ	ระเวลาที่ใช้ (นาที)

